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Abstract. In the number of snacks problem (NSP), which was originally proposed by our team, an
on-line player is given the task of deciding how many shares of snacks his noshery should prepare
each day. The on-line player must make his decision and then finish the preparation before the
customers come to his noshery for the snacks; in other words, he must make decision in an on-line
fashion. His goal is to minimize the competitive ratio, defined as infσ CA(σ )/COPT (σ ), where σ

denotes a sequence of numbers of customers, COPT (σ ) is the cost of satisfying σ by an optimal off-
line algorithm, and CA(σ ) is the cost of satisfying σ by an on-line algorithm. In this paper we give
a competitive algorithm for on-line number of snacks problem P1, the Extreme Numbers Harmonic
Algorithm (ENHA), with competitive ratio 1 + p · (M − m)/(M + m), where M and m are two
extreme numbers of customers over the total period of the game, and p is a ratio concerning the cost
of the two types of situations, and then prove that this competitive ratio is the best one if an on-line
player chooses a fixed number of shares of snacks for any sequence of numbers of customers. We
also discuss several variants of the NSP and give some results for it. Finally, we propose a conjecture
for the on-line NSP.
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1. Introduction

FOUNDATIONS

Many ongoing decision-making activities, such as currency exchange, stock trans-
actions or mortgage financing, must be carried out in an on-line fashion, with no
secure knowledge of future events. However, that knowledge often influences the
decision result in a fatal way. Faced with this lack of knowledge, players of these
decision-making games often have two choices. One is to use models based on
assumptions about the future distribution of relevant quantities such as exchange
rates or mortgage rates, and aim for acceptable results on the average. The other is
to analyze the worst case and then make some decision. Unfortunately, these two
approaches may give some on-line solutions that are far from the relevant optimal
solutions.

An alternate approach in such situations — and the one we explore here —
is to use competitive analysis (first applied to on-line algorithms by Sleator and
Tarjian [1]). In this approach, the performance of an on-line strategy is measured
against that of an optimal off-line strategy having full knowledge of future events.
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For some measure of cost or of profit, we try to minimize the worst-case ratio of
on-line cost to optimal cost or of optimal profit to on-line profit; if this ratio is
bounded for all event sequences, we deem the on-line strategy to be competitive
and call the supremum of this ratio for profit problem and the infimum of this ratio
for cost problem the competitive ratio of this on-line strategy. An advantage of this
performance measure over the traditional average-case measure is that for most
nontrivial decision-making activities it is extremely difficult to come up with an
accurate probabilistic model.

In devising a competitive strategy, the on-line player will not be able to es-
cape the necessity of making some assumptions, or having some knowledge about
future events, but these need not be probabilistic in nature. For example, instead
of knowledge about the distribution of future numbers of customers, an on-line
strategy might be based only on knowledge of the bounds on the possible numbers
of customers over the period in question, and should work well no matter how
erratically (unfortunately) the number of customers varies from day to day.

An on-line algorithm receives the input incrementally, one piece at a time. In
response to each input portion the algorithm must generate output, not knowing
the future input. In a competitive analysis an on-line algorithm A is compared to
an optimal off-line algorithm OPT. An optimal off-line algorithm knows the entire
input sequence in advance and can process it optimally. Given an input sequence
I, let CA(I) and COPT (I) denote the costs incurred by A and OPT in processing I,
respectively. Algorithm A is called á-competitive if there exist a constant α and β

such that,

CA(I ) � α · COPT (I ) + β,

for all input sequences I. An analogous definition can be given for on-line maxim-
ization problems. We note that a competitive algorithm must perform well on all
input sequences.

RELATED WORK

Over the past two decades, on-line problems and their competitive analysis have
received considerable interest. On-line problems had been investigated already in
the 1970s and early 1980s but an extensive, systematic study started only when
Sleator and Tarjian [1] suggested comparing an on-line algorithm to an optimal
off-line algorithm and Karlin et al. [2] coined the term competitive analysis. In the
late 1980s and early 1990s, three basic on-line problems were studied extensively,
namely paging, the k-server problem and metrical task systems. The k-server prob-
lem, introduced by Manasse et al. [3], generalizes paging as well as more general
caching problems. The problem consists of scheduling the motion of k mobile
servers that reside on the points of a metric space S. The metrical task system,
introduced by Borodin et al. [4], can model a wide class of on-line problems. An
on-line algorithm deals with events that require an immediate response. Future
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events are unknown when the current event is dealt with. The task system [4], the
k-server problem [5], and on-line/off-line games [6] all attempt to model on-line
problems and algorithms. During the past few years, apart from the three basic
problems, many on-line problems have been investigated in application areas such
as data structures, distributed data management, scheduling and load balancing,
routing, robotics, financial games, graph theory, and a number of problems arising
in computer systems.

The adversary method for deriving lower bounds on the competitive ratio has
been implicitly used by Woodall [7] in the analysis of the so-called Bay Restaurant
Problem. Kierstead and Trotter [8] use the adversary method in their investigation
of on-line interval graph coloring. Yao [9] formulates a theorem that starts with
the words “For any on-line algorithm...” and which proves the impossibility of an
on-line bin-packing algorithm with a competitive ratio strictly better than 3/2. This
seems to be the first result stated on the class of all on-line algorithms for a certain
optimization problem, thus exploiting the distinction between on-line and off-line
algorithms. The on-line NSP was originally proposed by us, and there is not much
discussion in the literature.

OUR CONTRIBUTION

We originally proposed the on-line number of snacks problem. The problem object-
ive is to decide how many shares of snacks should be prepared, without knowing
the numbers of customers coming in. We use the adversary method to solve this
problem. Namely, for any on-line algorithm, we suppose an off-line adversary —
an off-line player — to design a sequence of numbers of customers in order to
let the relevant competitive ratio be as great as possible, namely, to let the on-line
algorithm which is chosen by on-line player performance be as bad as possible.
We investigate different versions of this problem, given by varying the on-line
player’s knowledge. For different versions of this on-line problem, we show that
some surprisingly small competitive ratios can be achieved under very moderate
assumptions about the on-line player’s knowledge concerning the numbers of cus-
tomers: only the upper and lower bounds on the possible numbers of customers
need to be known.

2. The number of snacks problem

2.1. PROBLEM STATEMENT

In the number of snacks problem an on-line player is given the job of deciding
the number of snacks, without knowing how many customers will come to his
noshery for these snacks over some period of time. On any given day, the on-line
player must tell his staff to prepare a certain number of shares of snacks in the
morning, and the customers will come to his noshery for the snacks later, e.g.,
at noon. The problem is designated as on-line because the player must determine
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his snack number without knowing what the future numbers of customers will be.
There are then three cases as follows,

• The noshery prepares m shares of snacks, and then there are m buyers. In
other words, the on-line player can sell all the snacks out without any more
cost. In this situation we assume that the on-line player supplies the snack
with the cost c per share, so that the total cost is m · c.

• The noshery prepares m shares of snacks, but there are only m1 buyers,
where m1 < m. Thus, the on-line player must cost c1 per snack to produce
and to deal with the m − m1 shares of snacks. In this situation, the on-line
player cost is m1 · c + (m − m1) · c1. Considering the economic meaning, if
we assume that c1 > c and let c1 = pc, where p � 1, the above formula is
changed to m1 · c + (m − m1) · pc.

• The noshery prepares m shares of snacks, but there are m2 buyers and m2 >

m. Because at this time the on-line player must quickly supply the snacks, so
the on-line player need produce the m2 − m shares of snacks at the cost c2

per snack. In this situation, the on-line player cost is m · c + (m2 − m) · c2 =
m2 · c + (m2 − m) · (c2 − c). Obviously c2 > c. If we let c2 = qc, where
q � 1, similarly, we can get m2 · c + (m2 − m) · (q − 1) · c.

Considering the following two problems,
(1) If the player knows the exact number of the buyers every time over a period

of time, the on-line player can do his best as long as the same number of
shares of snacks can be prepared. In this way, the player always gets the
optimum cost.

(2) However, if the number of the buyers is coming in over an on-line fashion, in
other words, the on-line player does not know the number of the buyers when
the he must make a decision for the number of the snacks for the coming day,
how does he?

Given a sequence of numbers of buyers, the snack problem is to decide how many
shares of snacks should be prepared beforehand. Obviously, problem (1) is an off-
line problem and (2) is an on-line problem. For this number of snacks problem, the
off-line problem can be solved easily. The optimal solution for the off-line problem
can be achieved as long as the player prepares a sufficient number of snacks to meet
the demand by these customers each day. However, problem (2) is very difficult for
the decision-maker as he does not know the number of buyers in advance. Thus he
must make his decision in an on-line fashion, deciding how many shares of snacks
should be prepared without any knowledge of the future number of buyers.

Considering the general model of the number of snacks problem, we denote
the actual sequence of number of buyers with σ = (d1, d2, . . . , dn), where di

means the actual numbers of buyers on the ith day. Similarly, we denote by σ ′ =
(d ′

1, d
′
2, . . . , d ′

n) the on-line number sequence of the snacks, namely the on-line
decision-maker preparing d ′

i shares of the snacks on the ith day. Let COPT (σ )

denote the off-line optimal cost to finish the service of σ ; let CA(σ ) denote the
on-line cost for the same sequence, and let c, c1, and c2 denote the cost under the
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usual, inadequate, and superfluous situations respectively. Obviously, we can get
the optimal solution to the off-line problem for a certain σ ,

COPT (σ ) = c ·
n∑

i=1

di,

and for any on-line algorithm A for this problem, we denote by

CA(σ ) = c ·
n∑

i=1

di + (c2 − c) ·
n∑

i=1
di>d ′

i

(di − d ′
i ) + c1 ·

n∑
i=1

d ′
i
>di

(d ′
i − di),

the on-line cost. For any on-line algorithm A, the competitive ratio is defined
as infσ CA(σ )/COPT (σ ). A small competitive ratio implies that A can do well
in comparison with OPT. How can we design competitive algorithms with good
competitive ratios for this on-line problem?

2.2. ASSUMPTIONS ABOUT THE FLUCTUATION OF THE NUMBER OF THE

CUSTOMERS

The on-line player’s priori information about the number of customers sequence or
its function defines particular variants of the game. Let

• M = upper bound on the possible number of customers over the whole game,
and mi = upper bound on the possible number of customers on the ith day,

• m = lower bound on the possible number of customers over the whole game,
and mi = lower bound on the possible number of customers on the ith day,

• � = M/m ( call this the global fluctuation ratio), and �i = Mi/mi (call this
the local fluctuation ratio) on ith day,

• n = the number of days of over the game’s period time.

2.3. RESULTS

In this paper, some optimal on-line algorithms were produced for four variants of
the number of snacks problem.

• Variant 1. The general version, problem P, without any constraint for c1 and
c2, and with M, m and of course � known to the on-line player;

• Variant 2. The degenerative version of variant 1, problem P1, with c1 = c2−c,
namely, p = q −1, where p � 1, M, m and of course � known to the on-line
player;

• Variant 3. The special version, problem P ′, with mi and �i , where �i =
�0, and �0 means a constant fluctuation, i = 1, 2, . . . , n, and without any
constraint for c1 and c2 known to the on-line player;



454 W. MA ET AL.

• Variant 4. The degenerative special version, problem P ′′, with mi and �i ,
where �i = �0, i = 1, 2, . . . , n, known to the on-line player and with
c1 = c2 − c, namely, p = q − 1, where p � 1.

For variants 1 and 2, the game proceeds in the following fashion: the on-line player
chooses a strategy at the beginning of the game and his knowledge is just about M,
m and of course � over the global period of the game. For problem P1, we derive
an optimal competitive algorithm ENHA; for problem P, we also derive a similar
optimal competitive algorithm TENHA.

However, for variants 3 and 4, the on-line player only knows some local in-
formation, e.g., mi and �i , of the ith day of the whole period of the game in the
morning, and then chooses a strategy to solve the problem. In this paper, we only
investigate the case of �i = �0, i = 1, 2, . . . , n; the problem for some general
cases is still open. Further, we give a competitive algorithm LENHA for P ′′ and a
competitive algorithm TLENHA for P ′.

We also discuss the fact that all competitive algorithms for the four variants give
some lower bounds of relevant competitive ratios. In other words, no other on-line
algorithms can do better.

3. The degenerative version of P: The problem P1

3.1. EXTREME NUMBERS HARMONIC ALGORITHM

EXTREME NUMBERS HARMONIC ALGORITHM. For the on-line number of
snacks problem P1, if the on-line player knows the lower and upper bounds of the
numbers of the customers, namely, the two extreme numbers of the customers M

and m, he can always prepare d = 2Mm/(M + m) snacks for each day over the
period of time.

3.2. COMPETITIVE RATIO

THEOREM 1. For the on-line number of snacks problem P 1, Extreme Numbers
Harmonic Algorithm is a (1+p · (M −m)/(M +m))-competitive or (1+p · (�−
1)/(� + 1))-competitive algorithm.

Proof. Obviously, if M and m were known and c1 = c2 − c, namely, p = q − 1,
where p � 1, holds, the on-line cost of ENHA (denoted by A) satisfies the following
formula,

CA(σ ) = c ·
n∑

i=1

di + (c2 − c) ·
n∑

i=1
di>d ′

i

(di − d ′
i ) + c1 ·

n∑
i=1

d ′
i
>di

(d ′
i − di)

= c ·
n∑

i=1

di + pc ·
n∑

i=1

|di − d ′
i |

(1)
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For the ENHA strategy, the adversary can obviously choose di = M or di = m to
be the worst-case sequence of numbers of customers in order to let the competitive
ratio be as great as possible. First, let di = M and let σM denote the sequence with
all di = M. According to ENHA,

d ′
i = d = 2Mm

M + m
� di = M, i = 1, 2, . . . , n,

then,

CA(σM) = c ·
n∑

i=1

di + pc ·
n∑

i=1

|di − d|

= c · nM + pc · n
(

M − 2Mm

M + m

)

=
(

1 + p · M − m

M + m

)
· cnM

=
(

1 + p · M − m

M + m

)
· COPT (σM)

(2)

Similarly, we can get the following result if we let di = m and denote the sequence
of customers under this condition by σm. Considering d � m holds,

CA(σm) = c ·
n∑

i=1

di + pc ·
n∑

i=1

|di − d|

= c · nm + pc · n

(
2Mm

M + m
− m

)

=
(

1 + p · M − m

M + m

)
· cnm

=
(

1 + p · M − m

M + m

)
· COPT (σm)

(3)

The extreme situations (di = M or di = m) are the worst possible case; in other
words, no other σ , which is different from σm and σM , can lead to some worse
cases in order to enlarge the competitive ratio. It seems that, for any σ ,

CA(σ )

COPT (σ )
� 1 + p · M − m

M + m

= 1 + p · � − 1

� + 1

(4)

The proof is completed. �



456 W. MA ET AL.

3.3. A LOWER BOUND OF THE COMPETITIVE RATIO

Actually, the ENHA gives a lower bound of competitive ratio.

THEOREM 2. For on-line number of snacks problem P 1, if the off-line adversary
chooses a strategy with which a fixed number of customers is chosen for all days,
the competitive ratio (1+p ·(M−m)/(M+m)) or (1+p ·(�−1)/(�+1)), which
is given by ENHA, is a lower bound; in other words, no other better competitive
ratio can be achieved.

Proof. We need to prove that if the on-line player chooses another fixed num-
ber as his decision (denoted by algorithm A′), e.g., d

′ �= 2Mm/(M + m), the
competitive ratio will change to worse. Without loss of generality, we assume that
d

′
< 2Mm/(M + m). We will then prove that if the off-line adversary chooses σM

the competitive ratio 1 + p · (M − m)/(M + m) cannot be achieved. Under the
above statement, we have

CA′(σM) = c ·
n∑

i=1

di + pc ·
n∑

i=1

|di − d
′|

= c · nM + pc · n(M − d
′
)

=
(

1 + p ·
(

1 − d
′

M

))
· cnM

=
(

1 + p ·
(

1 − d
′

M

))
· COPT (σM)

>

(
1 + p · M − m

M + m

)
· COPT (σM)

(5)

The last inequality holds for d
′
< 2Mm/(M + m). This means that if the off-line

adversary chooses σM , the performance of the on-line algorithm A′ is worse than
A. Similarly, under the condition with d

′
> 2Mm/(M + m), the same result can

be obtained. �

3.4. ABOUT THE UPPER BOUND OF THE COMPETITIVE RATIO

In fact, if the on-line player chooses σ ′
M but the off-line player chooses σm, we can

get an upper bound of competitive ratio for the on-line number of snacks problem.
It is

1 + p ·
(

M

m
− 1

)
= 1 + p · (� − 1).

Thus, if the on-line player chooses any integer number from m to 2Mm/(M + m),
then he will get a relevant competitive ratio, which is between 1+p·(�−1)/(�+1)

and 1 + p · (� − 1).
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4. The general version: The problem P

4.1. TRANSFORMATIVE EXTREME NUMBERS HARMONIC ALGORITHM

Obviously, the results from Section 3 can be used to produce an on-line algorithm
for P. In fact, we propose an on-line algorithm for P as follows:

TRANSFORMATIVE EXTREME NUMBERS HARMONIC ALGORITHM: For
on-line number of snacks problem P, if the on-line player knows the lower and
upper bounds of the numbers of the customers, namely, the two extreme numbers

of customers M and m, then he can choose a fixed number d = Mm · (p + q −
1)/(M · p + m · (q − 1)) of snacks for all time.

4.2. COMPETITIVE RATIO

With the above on-line algorithm, we can easily obtain the following theorem.

THEOREM 3. For on-line number of snacks problem P, the Transformative Ex-
treme Numbers Harmonic Algorithm is a (1 + p · (q − 1) (M − m)/(M)) · p + m ·
(q − 1))-competitive or a (1 + p · (q − 1) (� − 1)/(� · p + (q − 1))-competitive
algorithm.

The proof for Theorem 3 is similar to that of Theorem 1, and is omitted here.

4.3. A LOWER BOUND OF COMPETITIVE RATIO

For on-line number of snacks problem P, we also have the following theorem.

THEOREM 4. For on-line number of snacks problem P , if the off-line adversary
chooses a strategy with which a fixed number of customers is chosen for all days,
the competitive ratio (1 + p · (q − 1) · (M − m)/(M · p + m(q − 1)) or (1 + p ·
(q − 1) (� − 1)/(� · p + (q − 1)), which is given by TENHA, is a lower bound;
e.g., no other better competitive ratio can be achieved.

We also omit its proof since it is similar with the proof of Theorem 2.

5. The degenerative special version of P′: Problem P′′

5.1. LOCAL EXTREME NUMBERS HARMONIC ALGORITHM

For problem P ′′, we have the following algorithm,

LOCAL EXTREME NUMBERS HARMONIC ALGORITHM: For problem P ′′,
if the on-line player knows that the lower bounds and local fluctuation ratios of the
number of customers of the ith day, namely, mi and �i = �0, i = 1, 2, . . . , n,
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and if c1 = c2 − c, namely, p = q − 1, where p � 1, holds, he can prepare
di = 2�0 · mi/(�0 + 1) snacks on the ith day of the game.

5.2. COMPETITIVE RATIO

With the above algorithm, we have the following theorem,

THEOREM 5. For problem P ′′, the LENHA is a (1 + p · (�0 − 1)/(�0 + 1))-
competitive algorithm.

Proof. If mi and �i = �0, i = 1, 2, . . . , n are known and c1 = c2 − c, namely,
p = q − 1, where p � 1, holds, for the ENHA strategy, obviously the off-line
adversary can choose di = �0 · mi or di = mi to be the worst case sequence
of numbers of customers of the ith day in order to make the competitive ratio as
great as possible. First, let di = mi and let σmi

denote the relevant sequence. Then
according to the LENHA and formula (1), the on-line cost of σmi

satisfies

CA(σmi
) = c ·

n∑
i=1

di + pc ·
n∑

i=1

|di − di|

= c ·
n∑

i=1

mi + pc ·
n∑

i=1

(
2�0 · mi

�0 + 1
− mi

)

=
(

1 + p · �0 − 1

�0 + 1

)
· c ·

n∑
i=1

mi

=
(

1 + p · �0 − 1

�0 + 1

)
· COPT (σmi

).

Step 2 holds for di � di = mi .
Similarly, we can get the following result if we let di = �0 · mi and denote

the sequence of customers under this condition by σMi
. Considering di � �0 · mi

holds, we have

CA(σMi
) = c ·

n∑
i=1

di + pc ·
n∑

i=1

|di − di|

= c ·
n∑

i=1

(�0 · mi) + pc ·
n∑

i=1

(
�0 · mi − 2�0 · mi

�0 + 1

)

=
(

1 + p · �0 − 1

�0 + 1

)
· c ·

n∑
i=1

(�0 · mi)

=
(

1 + p · �0 − 1

�0 + 1

)
· COPT (σMi

).
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Because the extreme situations (di = �0 · mi or di = mi) are the possible worst
case, namely, no other σ , which is different from σmi

and σMi
, can lead to any

worse cases in order to enlarge the competitive ratio. It seems that, for any σ ,

CA(σ )

COPT (σ )
� 1 + p · M − m

M + m

= 1 + p · �0 − 1

�0 + 1
.

The proof is completed. �

5.3. A LOWER BOUND OF COMPETITIVE RATIO

Actually, the LENHA gives an lower bound of competitive ratio.

THEOREM 6. For problem P ′′, if the on-line player chooses a fixed number as
his strategy on the ith day, then the competitive ratio (1 + p · (�0 − 1)/(�0 + 1))

is a lower bound of competitive ratio. In other words, no other better competitive
ratio can be achieved.

The proof is omitted.

6. The special version: Problem P′

6.1. TRANSFORMATIVE LOCAL EXTREME NUMBERS HARMONIC ALGORITHM

For problem P ′, we give the on-line algorithm as follows

TRANSFORMATIVE LOCAL EXTREME NUMBERS HARMONIC ALGO-
RITHM: For problem P ′, if the on-line player knows the lower bound and local
fluctuation ratio of the numbers of the customers of the ith day, namely, mi and
�i = �0, i = 1, 2, . . . , n and without any constraint for c1 and c2, the optimal on-

line algorithm is to choose a fixed number di = �0·mi ·(p+q−1)/(�0·p+(q−1))

of snacks on the ith day of the game.

6.2. COMPETITIVE RATIO

THEOREM 7. For problem P ′, the TLENHA is a (1 +p · (q − 1) · (�0 − 1)/(�0 ·
P + (q − 1)))-competitive algorithm.

The proof is omitted.

6.3. A LOWER BOUND OF COMPETITIVE RATIO

Similarly, we obtain the following result,
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THEOREM 8. For problem P ′, if the on-line player chooses a fixed number as his
strategy on the ith day, then the competitive ratio (1 + p · (q − 1) · (�0 − 1)/(�0 ·
p + (q − 1)) is a lower bound of the competitive ratio; in other words, no other
better competitive ratio can be achieved.

Again, the proof is omitted.

7. Valuation of the results

7.1. VALUATION OF THE COMPETITIVE RATIOS

We give some competitive algorithms for the different versions of the NSP prob-
lem. All the competitive ratios of these algorithms are obviously the functions of
the relevant fluctuation of the numbers of the customers. For example, for prob-
lem P1, the competitive ratio (denoted by α) is determined by the function, α =
1 + p · (� − 1)/(� + 1). If we fix the value of the p, e.g., let p=1, then we get,
α = 2 − 2/(� + 1). It is easy to see that α increases with �, but it has an upper
bound of 2. In fact, because lim�→∞(1+p · (�−1)/(�+1)) = p+1, we always
have an upper bound for the competitive ratio. Figure 1 shows that competitive
ratio varies with �.

7.2. COMPARISON OF PROBLEMS P1 AND P′′

In this paper, we investigate four variants of the SNP and obtain some competitive
algorithms. Obviously, for the same sequence of numbers of the customers, making
some comparison of problems P1 and P ′′ can be quite interesting. The difference
between problems P1 and P ′′ is that the on-line player knows the global fluctuation
of the whole game or the fluctuation of the ith day of the game. Intuitively, because
the problem P ′′ gives more knowledge to the on-line player, the relevant com-
petitive algorithm should perform somewhat better. Figure 2 shows the difference
between the two problems. Herein, for the same sequence it is easily to know that
M = mmax · �0, m = mmin and then � = mmax · �0/mmin. And from the Figure 1,
if let � = 16 and � = 2, we can get two competitive ratios, 1.88 and 1.33, for
problems P ′′ and P1 on the same sequence, respectively.

8. Conclusions and future work

A striking feature of the number of snacks problem is the conceptual simplicity of
the optimal strategy. To attain a given competitive ratio, the on-line player simply
defends himself against the threat of the adversary’s choosing the worst sequence
for his on-line strategy.

If we know only the lower bound of the number of customers, e.g. m, then what
will happen? And in this case, how should the on-line player choose his strategy?
For P1, if we can think that the upper bound of the customers is M → ∞, e.g.
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Figure 1. The curve of competitive ratio with the fluctuation �.

Figure 2. The differences of the problem P1 and problem P ′′ (n days game).

� → ∞, then the optimal on-line strategy is to prepare 2m snacks every day. In
fact this strategy gives a (p + 1)-competitive algorithm for the NSP P1.

Some cases for the number of snacks problem are still open. For example, (1)
if we don’t know both M and m but just the fluctuation �, how can we design
an on-line strategy for the number of snacks problem? (2) In this paper, we have
just discussed a situation in which the off-line player chooses a fixed number to
satisfy the whole sequence. For the number of snacks problem, can we design
other competitive algorithms with which the on-line player can choose a varying
number that is a function of a past part of customers’ sequence? And with these
competitive algorithms, can we get some better competitive ratio?
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Above, we have derived some lower bounds for on-line snacks problems P and
P1, given that the on-line player chooses a fixed number as his strategy. We would
like to give a conjecture that these lower bounds also hold in any cases, irrespective
of whether the on-line algorithm is a fixed number or not.

CONJECTURE For any competitive algorithm of an on-line number of snacks
problem, (1 + p · (� − 1)/(� + 1)) and (1 + p · (q − 1) (� − 1)/(� · p + q − 1))

are the lower bounds of the competitive ratio for P1 and P respectively.
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